Farkas Lemma and proof of duality

Source: Chapter 4 of Matoušek

Farkas Lemma: Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Exactly one of the following holds

- $\exists \mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$
- $\exists \mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \ge \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$

1: Is it possible to satisfy both conditions at the same time? Why?

Solution: No. Suppose for contradiction that both are satisfied at the same time. This gives $\mathbf{y}^T A \mathbf{x} = \mathbf{y}^T \mathbf{b}$. The left-hand side is ≥ 0 while the right-hand side is negative.

A (convex) **cone** is a set $C \in \mathbb{R}^d$ for which $\mathbf{x}, \mathbf{y} \in C$ and $a, b \ge 0$ implies $a\mathbf{x} + b\mathbf{y} \in C$.

A cone C generated by $X = {\mathbf{a}_1, \ldots, \mathbf{a}_n} \subseteq \mathbb{R}^d$ are all linear combinations of vectors in X with nonnegative coefficients. That is

$$C = \{t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_n\mathbf{a}_n : t_i \ge 0\} \subseteq \mathbb{R}^d.$$

A convex cone can be defined for any generating set X. If X is finite, then C is closed.

Geometric version of Farkas Lemma: Let $\mathbf{a}_1, \ldots, \mathbf{a}_n, \mathbf{b} \in \mathbb{R}^m$. Let C be the convex cone generated by \mathbf{a}_i s. Exactly one of the following holds:

•
$$\mathbf{b} \in C$$

• There exists a hyperplane H such that $\mathbf{0} \in H$ and H strictly separates \mathbf{b} from C. That is $H = {\mathbf{x} : \mathbf{h}^T \mathbf{x} = 0}$ and $\forall i, \mathbf{h}^T \mathbf{a}_i \ge 0$ and $\mathbf{h}^T \mathbf{b} < 0$.

2: Prove Farkas lemma using separation theorem. (What does the separation give?)

Solution: From the separation theorem, there exists $\mathbf{h} \in \mathbb{R}^m$ and $z \in \mathbb{R}$ such that $\forall \mathbf{x} \in C, \mathbf{h}^T \mathbf{x} > z$ and $\mathbf{h}^T \mathbf{b} < z$. Since $\mathbf{0} \in C$, we get $\mathbf{h}^T \mathbf{0} = 0 > z$. We can try to replace z by 0 and get not strict separation for the cone.

What if $\exists \mathbf{x} \in C$ such that $\mathbf{h}^T \mathbf{x} < 0$? Then $1000\mathbf{x} \in C$ and $1000\mathbf{h}^T \mathbf{x} < z$ if 1000 big enough. Hence we can let z = 0.

Reformulations of Farkas lemma:

- $A\mathbf{x} = \mathbf{b}$ has a non-negative solution iff $\forall \mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \ge \mathbf{0}^T$ also $\mathbf{y}^T \mathbf{b} \ge 0$.
- $A\mathbf{x} \leq \mathbf{b}$ has a non-negative solution iff $\forall \mathbf{y} \in \mathbb{R}^m$, $\mathbf{y} \geq \mathbf{0}$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.
- $A\mathbf{x} \leq \mathbf{b}$ has a solution iff $\forall \mathbf{y} \in \mathbb{R}^m$, $\mathbf{y} \geq \mathbf{0}$ with $\mathbf{y}^T A = \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.

Lets have linear programs

maximize
$$\mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$ (P)

minimize
$$\mathbf{b}^T \mathbf{y}$$
 subject to $A^T \mathbf{y} \ge \mathbf{c}$ and $\mathbf{y} \ge \mathbf{0}$ (D)

Lemma (Weak Duality): Let \mathbf{x} and \mathbf{y} be feasible solutions of (P) and (D). Then

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$$

3: Prove the weak duality.

Solution:

$$\mathbf{c}^T \mathbf{x} = \mathbf{x}^T \mathbf{c} \le \mathbf{x}^T A^T \mathbf{y} = (A\mathbf{x})^T \mathbf{y} \le \mathbf{b}^T \mathbf{y}$$

Proof of the Strong Duality theorem point 4. from worksheet 4 using the Farkas lemma. The point 4 is saying $(\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*)$

If both (P) and (D) have a feasible solution then each has an optimal solution, and if \mathbf{x}^* is an optimal solution of (P) and \mathbf{y}^* is an optimal solution of (D), then

$$\mathbf{c}^T \mathbf{x}^{\star} = \mathbf{b}^T \mathbf{y}^{\star}.$$

That is, the maximum of (P) equals the minimum of (D).

Let \mathbf{x}^* be optimal solution. Let $\gamma = \mathbf{c}^T \mathbf{x}^*$.

4: Are there solutions to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{c}^T \mathbf{x} \geq \gamma$?

Solution: Yes, \mathbf{x}^* .

- 5: Are there solutions to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{c}^T \mathbf{x} \geq \gamma + \varepsilon$, where $\varepsilon > 0$?
- **Solution:** No, contradiction with \mathbf{x}^* being optimal.

Let $\hat{A} = \begin{pmatrix} A \\ -\mathbf{c}^T \end{pmatrix}$ and $\hat{\mathbf{b}}_{\varepsilon} = \begin{pmatrix} \mathbf{b} \\ -\gamma - \varepsilon \end{pmatrix}$.

6: Apply Farkas Lemma on $\hat{A}\mathbf{x} \leq \hat{\mathbf{b}}_{\varepsilon}$ (which version?, write $\hat{\mathbf{y}}$ from FL as $(\mathbf{u}, z) \in \mathbb{R}^{m+1}$?)

Solution: FL: implies there exists $\hat{\mathbf{y}} \in \mathbb{R}^{m+1}$ such that $\hat{\mathbf{y}} \ge \mathbf{0}$, $\hat{\mathbf{y}}^T \hat{A} \ge \mathbf{0}^T$ and $\hat{\mathbf{y}}^T \hat{\mathbf{b}}_{\varepsilon} < 0$.

If we assign $(\mathbf{u}, z) = \hat{\mathbf{y}}$ we get

$$\mathbf{u}^T A - z \cdot \mathbf{c}^T \ge \mathbf{0}^T$$
 and $\mathbf{u}^T \mathbf{b} - z(\gamma + \varepsilon) < 0$.

Which can be rewritten as

$$A^T \mathbf{u} \ge z \cdot \mathbf{c} \text{ and } \mathbf{u}^T \mathbf{b} < z(\gamma + \varepsilon).$$

Divide by z and we get

$$A^T \frac{\mathbf{u}}{z} \ge \mathbf{c} \text{ and } \frac{\mathbf{u}}{z}^T \mathbf{b} < (\gamma + \varepsilon).$$

Let $\mathbf{y}_{\varepsilon} = \frac{\mathbf{u}}{z}$. Then

$$\forall \varepsilon > 0, \exists \mathbf{y}_{\varepsilon}, A^T \mathbf{y}_{\varepsilon} \ge \mathbf{c} \text{ and } \mathbf{y}_{\varepsilon}^T \mathbf{b} < (\gamma + \varepsilon).$$

By taking limit for $\varepsilon \to 0$, we get that there exists \mathbf{y}^* such that $A^T \mathbf{y}^* \ge \mathbf{c}$ and $\mathbf{b}^T \mathbf{y}^* \le \gamma$. By weak duality $\mathbf{b}^T \mathbf{y}^* = \gamma$ and \mathbf{y}^* is an optimal solution.

7: How to show that $z \neq 0$? (Hint: Use Farkas lemma again with $\varepsilon = 0$.)

Solution: Use Farkas Lemma with $\varepsilon = 0$. It changes to \forall . In particular, it gives that

$$\forall \hat{\mathbf{y}} \ge 0, \hat{\mathbf{y}}^T \hat{A} \ge \mathbf{0}^T \text{ and } \hat{\mathbf{y}}^T \hat{\mathbf{b}} \ge 0.$$

This means

$$\forall (\mathbf{u}, z) \ge 0, A^T \mathbf{u} \ge z \cdot \mathbf{c} \text{ and } \mathbf{u}^T \mathbf{b} \ge z\gamma$$

. and implies $\mathbf{u}^T \mathbf{b} \ge z\gamma$. If z = 0, we would get a contradiction with $\mathbf{u}^T \mathbf{b} < z(\gamma + \varepsilon)$.