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Farkas Lemma and proof of duality

Source: Chapter 4 of Matoušek

Farkas Lemma: Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following holds

• ∃x ∈ Rn such that Ax = b and x ≥ 0

• ∃y ∈ Rm such that yTA ≥ 0T and yTb < 0

1: Is it possible to satisfy both conditions at the same time? Why?

Solution: No. Suppose for contradiction that both are satisfied at the same time.
This gives yTAx = yTb. The left-hand side is ≥ 0 while the right-hand side is negative.

A (convex) cone is a set C ∈ Rd for which x,y ∈ C and a, b ≥ 0 implies ax + by ∈ C.
A cone C generated by X = {a1, . . . ,an} ⊆ Rd are all linear combinations of vectors in X with nonnegative
coefficients. That is

C = {t1a1 + t2a2 + · · ·+ tnan : ti ≥ 0} ⊆ Rd.
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A convex cone can be defined for any generating set X. If X is finite, then C is closed.

Geometric version of Farkas Lemma: Let a1, . . . ,an,b ∈ Rm. Let C be the convex cone generated by ais.
Exactly one of the following holds:

• b ∈ C

• There exists a hyperplane H such that 0 ∈ H and H strictly separates b from C.
That is H = {x : hTx = 0} and ∀i,hTai ≥ 0 and hTb < 0.
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2: Prove Farkas lemma using separation theorem. (What does the separation give?)

Solution: From the separation theorem, there exists h ∈ Rm and z ∈ R such that
∀x ∈ C,hTx > z and hTb < z. Since 0 ∈ C, we get hT0 = 0 > z. We can try to
replace z by 0 and get not strict separation for the cone.

What if ∃x ∈ C such that hTx < 0? Then 1000x ∈ C and 1000hTx < z if 1000 big
enough. Hence we can let z = 0.
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Reformulations of Farkas lemma:

• Ax = b has a non-negative solution iff ∀y ∈ Rm with yTA ≥ 0T also yTb ≥ 0.

• Ax ≤ b has a non-negative solution iff ∀y ∈ Rm, y ≥ 0 with yTA ≥ 0T also satisfies yTb ≥ 0.

• Ax ≤ b has a solution iff ∀y ∈ Rm, y ≥ 0 with yTA = 0T also satisfies yTb ≥ 0.

Lets have linear programs

maximize cTx subject to Ax ≤ b and x ≥ 0 (P )

minimize bTy subject to ATy ≥ c and y ≥ 0 (D)

Lemma (Weak Duality): Let x and y be feasible solutions of (P ) and (D). Then

cTx ≤ bTy.

3: Prove the weak duality.

Solution:
cTx = xTc ≤ xTATy = (Ax)Ty ≤ bTy

Proof of the Strong Duality theorem point 4. from worksheet 4 using the Farkas lemma.
The point 4 is saying (cTx? = bTy?.)

If both (P ) and (D) have a feasible solution then each has an optimal solution, and if x? is an optimal solution
of (P ) and y? is an optimal solution of (D), then

cTx? = bTy?.

That is, the maximum of (P ) equals the minimum of (D).

Let x? be optimal solution. Let γ = cTx?.

4: Are there solutions to Ax ≤ b and cTx ≥ γ?

Solution: Yes, x?.

5: Are there solutions to Ax ≤ b and cTx ≥ γ + ε, where ε > 0?

Solution: No, contradiction with x? being optimal.
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Let Â =
(
A

−cT

)
and b̂ε =

(
b

−γ−ε
)
.

6: Apply Farkas Lemma on Âx ≤ b̂ε (which version?, write ŷ from FL as (u, z) ∈ Rm+1 ?)

Solution: FL: implies there exists ŷ ∈ Rm+1 such that ŷ ≥ 0, ŷT Â ≥ 0T and
ŷT b̂ε < 0.

If we assign (u, z) = ŷ we get

uTA− z · cT ≥ 0T and uTb− z(γ + ε) < 0.

Which can be rewritten as

ATu ≥ z · c and uTb < z(γ + ε).

Divide by z and we get

AT u

z
≥ c and

u

z

T
b < (γ + ε).

Let yε = u
z . Then

∀ε > 0,∃yε, ATyε ≥ c and yTε b < (γ + ε).

By taking limit for ε→ 0, we get that there exists y? such that ATy? ≥ c and bTy? ≤
γ. By weak duality bTy? = γ and y? is an optimal solution.

7: How to show that z 6= 0? (Hint: Use Farkas lemma again with ε = 0.)

Solution: Use Farkas Lemma with ε = 0. It changes to ∀. In particular, it gives that

∀ŷ ≥ 0, ŷT Â ≥ 0T and ŷT b̂ ≥ 0.

This means
∀(u, z) ≥ 0, ATu ≥ z · c and uTb ≥ zγ

. and implies uTb ≥ zγ. If z = 0, we would get a contradiction with uTb < z(γ + ε).
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